skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Buonanno, Alessandra"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The measurement of orbital eccentricity in gravitational-wave (GW) signals will provide unique insights into the astrophysical origin of binary systems, while ignoring eccentricity in waveform models could introduce significant biases in parameter estimation and tests of general relativity. Upcoming LIGO-Virgo-KAGRA observing runs are expected to detect a subpopulation of eccentric signals, making it vital to develop accurate waveform models for eccentric orbits. Here, employing recent analytical results through the third post-Newtonian order, we develop v5: a new time-domain, effective-one-body, multipolar waveform model for eccentric binary black holes with spins aligned (or antialigned) with the orbital angular momentum. Besides the dominant (2, 2) mode, the model includes the (2, 1), (3, 3), (3, 2), (4, 4), and (4, 3) modes. We validate the model’s accuracy by computing its unfaithfulness against 99 (28 public and 71 private) eccentric numerical-relativity (NR) simulations, produced by the Simulating eXtreme Spacetimes Collaboration. Importantly, for NR waveforms with initial GW eccentricities below 0.5, the maximum (2, 2)-mode unfaithfulness across the total mass range 20 200 M is consistently below or close to 1%, with a median value of 0.02 % , reflecting an accuracy improvement of approximately an order of magnitude compared to the previous-generation v4 and the state-of-the-art esumalí eccentric model. In the quasi-circular-orbit limit, v5 is in excellent agreement with the highly accurate v5 model. The accuracy, robustness, and speed of v5 make it suitable for data analysis and astrophysical studies. We demonstrate this by performing a set of recovery studies of synthetic NR-signal injections, and parameter-estimation analyses of the events GW150914 and GW190521, which we find to have no eccentricity signatures. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. In this work, we test an effective-one-body radiation-reaction force for eccentric planar orbits of a test mass in a Kerr background, which contains third-order post-Newtonian (PN) nonspinning and second-order PN spin contributions. We compare the analytical fluxes connected to two different resummations of this force, truncated at different PN orders in the eccentric sector, with the numerical fluxes computed through the use of frequency- and time-domain Teukolsky-equation codes. We find that the different PN truncations of the radiation-reaction force show the expected scaling in the weak gravitational-field regime, and we observe a fractional difference with the numerical fluxes that is < 5 % , for orbits characterized by eccentricity 0 e 0.7 , central black-hole spin 0.99 M a 0.99 M and fixed orbital-averaged quantity x = M Ω 2 / 3 = 0.06 , corresponding to the mildly strong-field regime with semilatera recta 9 M < p < 17 M . Our analysis provides useful information for the development of spin-aligned eccentric models in the comparable-mass case. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  3. Abstract Accurate modelling of black hole binaries is critical to achieve the science goals of gravitational-wave detectors. Modelling such configurations relies strongly on calibration to numerical-relativity (NR) simulations. Binaries on quasi-circular orbits have been widely explored in NR, however, coverage of the broader 9-dimensional parameter space, including orbital eccentricity, remains sparse. This article develops a new procedure to control orbital eccentricity of binary black hole simulations that enables choosing initial data parameters with precise control over eccentricity and mean anomaly of the subsequent evolution, as well as the coalescence time. We then calculate several sequences of NR simulations that nearly uniformly cover the 2-dimensional eccentricity--mean anomaly space for equal mass, non-spinning binary black holes. We demonstrate that, for fixed eccentricity, many quantities related to the merger dynamics of binary black holes show an oscillatory dependence on mean anomaly. The amplitude of these oscillations scales nearly linearly with the eccentricity of the system. We find that for the eccentricities explored in this work, the magnitude of deviations in various quantities such as the merger amplitude and peak luminosity can approach $$\sim5\%$$ of their quasi-circular value. We use our findings to explain eccentric phenomena reported in other studies. We also show that methods for estimating the remnant mass employed in the effective-one-body approach exhibit similar deviations, roughly matching the amplitude of the oscillations we find in NR simulations. This work is an important step towards a complete description of eccentric binary black hole mergers, and demonstrates the importance of considering the entire 2-dimensional parameter subspace related to eccentricity. 
    more » « less
  4. NA (Ed.)
    General relativity (GR) has proven to be a highly successful theory of gravity since its inception. The theory has thrivingly passed numerous experimental tests, predominantly in weak gravity, low relative speeds, and linear regimes, but also in the strong-field and very low-speed regimes with binary pulsars. Observable gravitational waves (GWs) originate from regions of spacetime where gravity is extremely strong, making them a unique tool for testing GR, in previously inaccessible regions of large curvature, relativistic speeds, and strong gravity. Since their first detection, GWs have been extensively used to test GR, but no deviations have been found so far. Given GR’s tremendous success in explaining current astronomical observations and laboratory experiments, accepting any deviation from it requires a very high level of statistical confidence and consistency of the deviation across GW sources. In this paper, we compile a comprehensive list of potential causes that can lead to a false identification of a GR violation in standard tests of GR on data from current and future ground-based GW detectors. These causes include detector noise, signal overlaps, gaps in the data, detector calibration, source model inaccuracy, missing physics in the source and in the underlying environment model, source misidentification, and mismodeling of the astrophysical population. We also provide a rough estimate of when each of these causes will become important for tests of GR for different detector sensitivities. We argue that each of these causes should be thoroughly investigated, quantified, and ruled out before claiming a GR violation in GW observations. 
    more » « less
    Free, publicly-accessible full text available February 13, 2026
  5. Abstract Using ground-based gravitational-wave detectors, we probe the mass function of intermediate-mass black holes (IMBHs) wherein we also include BHs in the upper mass gap at ∼60–130 M ⊙ . Employing the projected sensitivity of the upcoming LIGO and Virgo fourth observing run (O4), we perform Bayesian analysis on quasi-circular nonprecessing, spinning IMBH binaries (IMBHBs) with total masses 50–500 M ⊙ , mass ratios 1.25, 4, and 10, and dimensionless spins up to 0.95, and estimate the precision with which the source-frame parameters can be measured. We find that, at 2 σ , the mass of the heavier component of IMBHBs can be constrained with an uncertainty of ∼10%–40% at a signal-to-noise ratio of 20. Focusing on the stellar-mass gap with new tabulations of the 12 C( α , γ ) 16 O reaction rate and its uncertainties, we evolve massive helium core stars using MESA to establish the lower and upper edges of the mass gap as ≃ 59 − 13 + 34 M ⊙ and ≃ 139 − 14 + 30 M ⊙ respectively, where the error bars give the mass range that follows from the ±3 σ uncertainty in the 12 C( α , γ ) 16 O nuclear reaction rate. We find that high resolution of the tabulated reaction rate and fine temporal resolution are necessary to resolve the peak of the BH mass spectrum. We then study IMBHBs with components lying in the mass gap and show that the O4 run will be able to robustly identify most such systems. Finally, we reanalyze GW190521 with a state-of-the-art aligned-spin waveform model, finding that the primary mass lies in the mass gap with 90% credibility. 
    more » « less
  6. null (Ed.)
  7. null (Ed.)